Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 252: 121194, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295456

RESUMO

The fouling propensity of oppositely charged colloids (OCC) and similarly charged colloids (SCC) on reverse osmosis (RO) and nanofiltration (NF) membranes are systematically investigated using a developed collision-attachment approach. The probability of successful colloidal attachment (i.e., attachment efficiency) is modelled by Boltzmann energy distribution, which captures the critical roles of colloid-colloid/membrane interaction and permeate drag. Our simulations highlight the important effects of ionic strength Is, colloidal size dp and initial flux J0 on combined fouling. In a moderate condition (e.g., Is =10 mM, dp=50 nm and J0= 100 L/m2h), OCC mixtures shows more severe fouling compared to the respective single foulant owing to electrostatic neutralization. In contrast, the flux loss of SCC species falls between those of the two single foulants but more closely resembles that of the single low-charged colloids due to its weak electrostatic repulsion. Increased ionic strength Is leads to less severe fouling for OCC but more severe fouling for SCC, as a result of the suppressed electrostatic attraction/repulsion. At a high Is (e.g., 3-5 M), all the single and mixed systems show the identical pseudo-stable flux Js. Small colloidal size leads to the drag-controlled condition, where severe fouling occurs for both single and mixed foulants. On the contrary, better flux stability appears at greater dp for both individual and mixed species, thanks to the increasingly dominated role of energy barrier and thus lowered attachment efficiency. Furthermore, higher J0 above limiting flux exerts greater permeate drag, leading to elevated attachment efficiency, and thus more flux losses for both OCC and SCC. Our modelling gains deep insights into the role of energy barrier, permeate drag, and attachment efficiency in governing combined fouling, which provides crucial guidelines for fouling reduction in practical engineering.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Coloides , Concentração Osmolar , Osmose
2.
Water Res ; 238: 120010, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146393

RESUMO

In membrane technology for water/wastewater treatment, the concepts of critical flux (JC) and limiting flux (JL) suggest the existence of a threshold flux below which no fouling occurs. However, their important roles on stable flux duration have not been sufficiently understood. This work adopts a collision-attachment approach to clarify the relationship of JC, JL to metastable (i.e., short-term stable) and long-term stable fluxes based on their dependence on initial flux (J0), foulant-clean-membrane energy barrier (Ef-m), and foulant-fouled-membrane energy barrier (Ef-f). When J0 is below JL, water flux remains stable over a long time even for the case of J0 over JC, thanks to the strongly repulsive Ef-f. At J0 > JL and J0 > JC, the water flux is unstable at the beginning of filtration, and the flux ultimately decreases to JL as the long-term stable flux. Under the condition of JL < J0 ≤ JC, an initial metastable flux appears owing to the high Ef-m, with longer metastable period observed at lower J0 and for more hydrophilic/charged membrane or colloids. Nevertheless, rapid flux decline occurs subsequently due to the energy barrier shifting to weak Ef-f, and the water flux eventually degenerates to JL in long-term fouling duration. Our results provide significant guidelines for fouling control strategies with respect to membrane design, feedwater pretreatment, and operational optimization.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração/métodos , Águas Residuárias , Purificação da Água/métodos , Água
3.
Bioorg Med Chem Lett ; 25(22): 5449-53, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428871

RESUMO

Despite a potential application of PRMT1 inhibitors in cancer treatment, very few of PRMT1 inhibitors have been reported. To obtain novel potent PRMT1 inhibitors, structure optimizations towards a hit compound, 4-((6-chloro-5-nitropyrimidin-4-yl)amino)benzimidamide, were carried out. A series of 4-((5-nitropyrimidin-4-yl)amino)benzimidamide derivatives were synthesized. Structure-activity relationship analysis led to the discovery of a number of PRMT1 inhibitors. The most potent compound corresponds to compound 6d, which showed an IC50 value of 2.0 µM against PRMT1. This compound also displayed a considerable anti-proliferative activity against three tumor cell lines, DLD-1, T24 and SH-SY-5Y, with IC50 values of 4.4 µM, 13.1 µM and 11.4 µM, respectively.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Descoberta de Drogas , Modelos Biológicos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Nitrocompostos/química , Nitrocompostos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
4.
J Neurosci ; 35(37): 12890-902, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377474

RESUMO

Recent evidence suggests that histone modifications play a role in the behavioral effects of cocaine in rodent models. Histone arginine is known to be methylated by protein arginine N-methyltransferases (PRMTs). Evidence shows that PRMT1 contributes to >90% of cellular PRMT activity, which regulates histone H4 arginine 3 asymmetric dimethylation (H4R3me2a). Though histone arginine methylation represents a chemical modification that is relatively stable compared with other histone alterations, it is less well studied in the setting of addiction. Here, we demonstrate that repeated noncontingent cocaine injections increase PRMT1 activity in the nucleus accumbens (NAc) of C57BL/6 mice. We, subsequently, identify a selective inhibitor of PRMT1, SKLB-639, and show that systemic injections of the drug decrease cocaine-induced conditioned place preference to levels observed with genetic knockdown of PRMT1. NAc-specific downregulation of PRMT1 leads to hypomethylation of H4R3me2a, and hypoacetylation of histone H3 lysine 9 and 14. We also found that H4R3me2a is upregulated in NAc after repeated cocaine administration, and that H4R3me2a upregulation in turn controls the expression of Cdk5 and CaMKII. Additionally, the suppression of PRMT1 in NAc with lentiviral-short hairpin PMRT1 decreases levels of CaMKII and Cdk5 in the cocaine-treated group, demonstrating that PRMT1 affects the ability of cocaine to induce CaMKII and Cdk5 in NAc. Notably, increased H4R3me2a by repeated cocaine injections is relatively long-lived, as increased expression was observed for up to 7 d after the last cocaine injection. These results show the role of PRMT1 in the behavioral effects of cocaine. SIGNIFICANCE STATEMENT: This work demonstrated that repeated cocaine injections led to an increase of protein arginine N-methyltransferase (PRMT1) in nucleus accumbens (NAc). We then identified a selective inhibitor of PRMT1 (SKLB-639), which inhibited cocaine-induced conditioned place preference (CPP). Additionally, genetic downregulation of PRMT1 in NAc also attenuated cocaine-caused CPP and locomotion activity, which was associated with decreased expression of histone H4 arginine 3 asymmetric demethylation (H4R3me2a) and hypoacetylation of histone H3 lysine 9 and 14 (acH3K9/K14). This study also showed that H4R3me2a controlled transcriptions of Cdk5 and CaMKII, and that PRMT1 negatively affected the ability of cocaine to induce CaMKII and Cdk5 in NAc. Notably, increased H4R3me2a by repeated cocaine injection was relatively long-lived as increased expression was observed up to 7 d after withdrawal from cocaine. Together, this study suggests that PRMT1 inhibition may serve as a potential therapeutic strategy for cocaine addiction.


Assuntos
Amidinas/farmacologia , Cocaína/farmacologia , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/enzimologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/fisiologia , Pirimidinas/farmacologia , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Metilação , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/antagonistas & inibidores , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Conformação Proteica , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...